直流无刷电机具有结构简单、运行可靠、维护方便的优势现已在各行业领域中得到广泛应用。电机是一个机电能量转换装置,其主要类型分为三大类:同步电机、异步电机和直流电机。以往传统的直流无刷电机都是采用电刷以机械的方法进行转向,在这个过程中就会产生摩擦。长时间的摩擦也带来了诸如噪单、火化、无线电干扰以及寿命短等弊病。加上制造成本高昂、维修困难也大大限制了直流无刷电机的应用范围。
上世纪30年代就有人针对直流无刷电机的弊病开始研制以电子换向替代电刷机械换向的方式。经过了几十年的努力后终于实现了这一愿望。上世纪70年代以来,随着我国电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为直流无刷电机的广泛应用奠定了坚实的基础。下面我们来了解直流无刷电机的工作原理及控制方法。
一、三相直流无刷电机的组成部份
直流无刷永磁电机主要由电机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相,转子由永久磁钢按一定极对数组成。图1所示为三相两极直流无刷电机结构。
图1三相两极直流无刷电机组成
三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、C相绕组分别与功率开关管V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相联结。
当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各项绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。
图2为三相直流无刷电机半控桥电路原理图。此处采用光电器件作为位置传感器,以三只功率晶体管V1、V2和V3构成功率逻辑单元。
图2三相直流无刷电机
三只光电器件VP1、VP2和VP3的安装位置各相差120度,均匀分布在电机一端。借助安装在电机轴上的旋转遮光板的作用,使从光源射来的光线一次照射在各个光电器件上,并依照某一光电器件是否被照射到光线来判断转子磁极的位置。
图3开关顺序及定子磁场旋转示意图
图2所示的转子位置和图3a)所示的位置相对应。由于此时广电器件VP1被光照射,从而使功率晶体V1呈导通状态,电流流入绕组A-A’,该绕组电流同转子磁极作用后所产生的转矩使转子的磁极按图3中箭头方向转动。当转子磁极转到图3b)所示的位置时,直接装在转子轴上的旋转遮光板亦跟着同步转动,并遮住VP1而使VP2受光照射,从而使晶体管V1截至,晶体管V2导通,电流从绕组A-A’断开而流入绕组B-B’,使得转子磁极继续朝箭头方向转动。当转子磁极转到图3c)所示的位置时,此时旋转遮光板已经遮住VP2,使VP3被光照射,导致晶体管V2截至、晶体管V3导通,因而电流流入绕组C-C’,于是驱动转子磁极继续朝顺时针方向旋转并回到图3a)的位置。