全国服务热线:
0755-23227057
新闻资讯
▪  松下伺服应用行业▪  技术服务▪  工程案例▪  行业资讯▪  公司新闻▪  常见问题
联系我们
电话:0755-23227057
传真:0755-23227067
邮箱:zhenjinzhi@126.com
地址:深圳市宝安区西乡街道文乐工业区C栋305室
你现在所在的位置:网站首页 > 新闻资讯 > 松下伺服电机的几个小常识

松下伺服电机的几个小常识

信息来源:MOTEC直流伺服电机代理商-深圳兴弘泰自动化
松下伺服电机的几个小常识松下伺服一级代理-兴弘泰自动化

1、松下伺服电机选型的问题,究竟什么时候选择低惯量,什么时候选择中惯量?

答:通常情况下,为了满足伺服系统的高响应性,一般松下伺服电机都是选用小惯量的电机,又因为松下伺服电机的额定输出力矩(或额定输出功率)越大一般其转子转动惯量也越大,所以单纯讨论电机转动惯量的大小是没有意义的,真正应该讨论的是松下伺服电机的额定输出力矩与松下伺服电机的转动惯量的比值,或者说同样额定输出力矩(同样额定输出功率)的电机的转动惯量的大小。松下伺服电机一般选择小惯量的松下伺服电机以满足较高的动态响应。当然根据松下伺服电机的具体应用环境,也可以选择中惯量,高惯量的松下伺服电机,比如松下伺服电机作为主轴,对于快速响应的要求不那么高的时候,但对速度控制要求非常精确,并且经常要求运行在低速低频状态下,还要求能够有编码器仿真信号输出的时候。而这个时候变频器却不能胜任。

2、松下伺服电机飞车的问题?

答:松下伺服电机飞车这种现象比较常见,也的确非常危险,关于松下伺服电机飞车的问题主要是四个方面的经验。第一是因为外界干扰引起的松下伺服电机高速运转,这种情况都是伺服驱动器为位置脉冲控制方式,主要因为外部接线问题(如接屏蔽,接地等等)和驱动器内部的位置指令滤波参数设置问题而引起,这样的情况在绣花机,弹簧机上经常碰到,这种情况姑且也称为飞车。第二是松下伺服电机的编码器零偏(encoderoffset)而引起的飞车,究其实质是编码器零位错误导致的飞车。第三是伺服驱动器进行全闭环控制时,位置环编码器故障导致的飞车。编码器损坏造成的飞车,本质上是因为伺服系统没有位置反馈信号,所以伺服系统的位置偏差是无穷大,从而位置环输出的速度指令将是无穷大,于是伺服系统将以速度限制值进行高速旋转,形成飞车;第四种情况则是位置环编码器的接线错误,具体的就是信号A,A-的接线颠倒导致的。为什么出现这种情况呢,因为位置环编码器的接线一般是A,A-,B,B-,如果A,A-(或B,B-)信号接反的话,则形成正反馈,正反馈的后果就是必然导致飞车;第伍是位置偏差没有清除而导致的飞车,这种情况主要是发生在伺服驱动器位置脉冲指令控制下,并且伺服驱动器进行了力矩限制,力矩限制住后不能有效推动负载,导致位置偏差不断的累积,当解除力矩限制后,伺服系统急于去消除该偏差,以最大加速度去运行,从而导致飞车,当然这种飞车不会持久,很快就会报警驱动器故障。

3、为什么松下伺服驱动器加上使能后,所连接的松下伺服电机的轴用手不能转动?

答:以伺服驱动器处于位置控制方式为例。运用自动控制的基本原理就可以进行解释。因为伺服驱动器加上使能后,整个闭环系统就开始工作了,但这个时候松下伺服系统的给定却为零,假定伺服驱动器处于位置控制方式的话,那么位置脉冲指令给定则为零,如果用手去转动电机轴的话,相当于外部扰动而产生了一个小的位置反馈,因为这个时候的位置脉冲指令给定为零,所以就产生了一个负的位置偏差值,然后该偏差值与伺服系统的位置环增益的乘积就形成了速度指令给定信号,然后速度指令给定信号与内部的电流环输出了力矩,这个力矩就带动电机运转试图来消除这个位置偏差,所以当人试图去转动电机轴的时候就感觉转动不了。

4、松下伺服驱动器制动电阻选择的问题?

答:制动电阻的问题,这是个大问题。当然从工程的角度来讲,因为有些东西无法准确的计算,为安全起见,对于频繁启动停止,频繁正反转的场合,可以简单的用能量守恒原理来进行计算。而对于制动电阻的阻值选择的一般规律是制动电阻的阻值不能够太大,也不能够太小,而是有一个范围的。如果阻值太大的话,简单点说,假如是无穷大的话,相当于制动电阻断开,制动电阻不起制动的作用,伺服驱动器还是会报警过电压;如果阻值太小的话,则制动的时候通过该电阻的电流就将非常大,流过制动功率管的电流也会非常大,会将制动功率管烧毁,而制动功率管的额定电流一般是等同于驱动管的,所以制动电阻的最小值是不应当低于710/伺服驱动器的额定电流的(假定伺服驱动器是三相380V电压输入)。另外制动电阻分为两种:铝合金制动电阻和波纹制动电阻。当然网上资料说两种制动电阻各有优劣,但是我想对于一般的工程应用应该是都可以的。另外对于变频器的制动电阻的选择原理上与伺服驱动器是相似的。

5、松下伺服驱动器电子齿轮比的设置的问题?

答:这里首先要区分伺服的控制方式,当然这里假定伺服是以接受脉冲的方式来控制的(伺服如果以总线的方式来控制的话,伺服驱动器就不用设置电子齿轮比了,但是在上位系统中却会有另外一个东西需要设置,这个东西就是脉冲当量,本质上和伺服驱动器的电子齿轮比是一回事),然后还有伺服是位置控制方式还是速度控制方式或力矩控制方式的问题,如果伺服是速度控制方式或力矩控制方式的话,显然电子齿轮比的设置就失去了意义。也就是说电子齿轮比的设置仅在位置控制方式的时候才有效。还有个问题就是伺服是作为直线轴还是作为旋转轴来使用。对于绣花机来说,X轴,Y轴,M轴,SP轴都是直线轴,因为大豪上位认为是1000个脉冲为一转,所以对于这些轴的电子齿轮比的设置实际上是机械减速比与8的乘积,而对于D轴,H轴来说,则是旋转轴,大豪上位认为8000个脉冲对应360度,所以电子齿轮比设置为8000/360=200/9。对于弹簧机各轴来说,其实也存在直线轴和旋转轴的问题,比如凸轮轴,螺距轴,切刀轴就是旋转轴,而送线轴则是直线轴,不过实际上在伺服驱动器里电子齿轮比一般设置为1/1,而将电子齿轮比的功能的设置放在弹簧机上位上进行,当然在弹簧机上位里换了个叫法,叫着解析度,解析度分子的计算,旋转轴(凸轮轴,螺距轴,切刀轴)=360乘以100,直线轴(送线轴)=圆周率乘以直径乘以100;解析度分母的计算:伺服马达编码器的分辨率*信号倍率*齿轮比。

松下伺服相关产品
松下伺服相关行业资讯
伺服驱动器的工作原理
如何选择减速步进电机
步进电机的选用原则
增量编码器与绝对值编码器问题
运动控制系统抗干扰分析
叶片的抗拉强度
机器人革命助力制造业腾飞ck3
内部编码器与外部编码器的区别
步进电机的特点
MOTEC 电动缸在六自由度平台上的应用
二相与五相步进电机的差异
闭环步进电机系统的优点
罩极电机定子线圈绕线机
微特电机市场正在逐渐回暖
伺服干扰怎么处理
进阶高手的基础之路——步进电机问题汇总
应对离心风机叶轮磨损的问题可以使用哪些方法
步进电机转速与脉冲频率的关系
利用“加减速”轻松避免步进电机堵转现象
永磁交流同步伺服电机的结构和工作原理
首页     公司简介     产品中心     新闻资讯     工程案例     人力资源     联系我们
深圳市兴弘泰自动化有限公司所有 Copyright © 2015-2025 All Rights Reserved
地址:深圳市宝安区西乡街道文乐工业区C栋305室
服务热线:0755-23227057    传真:0755-23227067
国家工信部网站备案号:粤ICP备18141614号-1     企业网站建设技术支持:深圳网站制作
本站关键字:松下伺服、直流伺服、松下伺服电机、松下伺服驱动、松下伺服一级代理、直流伺服电机、MOTEC伺服电机
在线客服
业务咨询
业务咨询
技术支持
15994705506
关闭